Announcements

Slides on 'Cavity Characterization'
Cumulative list of solutions



Information on the course on Fundamentals of optical quantum technologies, 2025-2

Semester: 2025-2
Responsable: Profs. Sebastian Slama, sebastian.slama@uni-tuebingen.de
& Philippe W. Courteille, philippe.courteille@ifsc.usp.br
Start and end of classes: 15.10.2025 to 25.2.2026
Queries: via e-mail
Time and location of classes:Tuesdays from 10h15 to 14h00 in room D4A19
Holidays: 19.12.2025-7.1.2026 (X-mas)
Language: Portuguese, French, German or English (to be agreed with the students)
Workload:
Theory 4 per week
Practice3 per weak
Studies 8 per weak
Duration14 weaks
Tentative list of topics: I. Atomic physics repetition
AL 1.1 + 3.1 1. Atomic level structure (quantum defect, fine and hyperfine structure, selection rules), alkalis (Rb) and earth alkalis (Sr), Grotrian diagrams, magnetic fields: Zeeman- & Paschen-Back regime
AL 1.2.1-2.3.2 2. Two-level atom-light interaction, perturbation theory, Rabi oscillations, spontaneous emission and quantum jumps, density matrix, optical Bloch equations
AL 2.4.1-3 + QM 24.3.1-33. Three-level systems, EIT, Raman transitions, applications in quantum computing: Qbits and quantum gates with cold atoms

II. Experimental techniques
OS 4 + 5 4. Spectroscopy (absorption, fluorescence, saturation), broadening mechanisms, sensitivity limits, interferometry (frequency beating, heterodyning)
AL 4.2 5. Lasers in general, diode laser types (FP, ECDL, DFB, FBR, ...) and their properties (linewidth, tuneability), Laser beams: Gaussian optics, AOMs, EOMs, optical fibers
AL 5.1 6. Modes and properties of an optical cavity, coupling light into a cavity
AL 5.2 7. Atoms in optical cavities: coupling constant, cooperativity, single-photon saturation, sub-recoil resolution
OS 4.3.1-4.4.4 + 6.1-38. Laser stabilization techniques: PID control, FM, phase modulation, PDH, frequency beating, PLL

III. Laser cooling and trapping
AL 3.2-3 9. Light forces, Doppler cooling, optical molasses
QM 26.2-3 10. MOT, Sisyphus-cooling, Raman-sideband cooling
QM 20.1.3 + 26.3.2 11. Dipole potential (AC Stark effect), magic wavelength, adiabatic potentials

IV. Quantum simulation and sensing with optical tweezers and cavities
QM 26.4 12. Dipole traps, parity projection in optical tweezers, optical lattices, magnetic traps, evaporative cooling
QM 24.3.1-3 13. Application for quantum simulation: Quantum processors based on neutral atoms in tweezer arrays
QM 24 14. Collective effects in optical cavities (normal mode splitting, Dicke model, CARL)
15. Lab visit

Not covered but available upon request
AL 2.5-6 A1. Quantization of light (Jaynes-Cummings model)
QM 27 A2. Quantum statistics and ultracold collisions (BEC, Fermi gases)
AL 5 A3. Collective models (Dicke, Tavis-Cummings, ...)
The labels in parenthesis correspond to chapters in the scripts downloadable below:
AL: Atom-Light Interaction, QM: Quantum Mechanics, OS: Optical Spectroscopy
Green topics are taught by Sebastian Slama

Exercises: Cumulative list of exercises

Recomended literature: Philippe W. Courteille, Lecture on Atom-Light Interaction and Basic Applications
Philippe W. Courteille, A practical course in Optical Spectroscopy
Philippe W. Courteille, Quantum Mechanics for Atomic & Molecular Physics, Quantum & Atom Optics
D.J. Griffiths, Introduction to Quantum mechanics, 3a edição, Pearson
P.W. Atkins and R.S. Friedman, Molecular Quantum Mechanics (3rd ed.) Oxford University, (1997, 2001)
I.N. Levine, Quantum Chemistry, Allyn and Bacon (3rd ed.) Boston (1983)
C. Cohen-Tannoudji, B. Diu, F. Laloe, Quantum mechanics (vol. 1) Wiley Interscience
H.A. Bethe, R. Jackiw, Intermediate Quantum Mechnanics, (2nd ed.) W.A. Benjamin, Inc)
J.I. Steinfeld, Molecules and Radiation, The MIT Press
A. Corney, Atomic and Laser Spectroscopy, Clarendon Press, Oxford
B.H. Bransden, C.J. Joachain, Physics of Atoms and Molecules, John Wiley & Sons